K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

Ta có :)

\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)

(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))

NV
13 tháng 6 2021

BĐT cần chứng minh tương đương:

\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

13 tháng 6 2021

Áp dụng BĐT với hai số dương ta có:

`a+b>=2sqrt{ab}`

`1/a+1/b>=2/sqrt{ab}`

`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`

Dấu "=" xảy ra khi `a=b>0`

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

19 tháng 6 2020

CM theo bdt co-si

Áp dụng bdt Co - si cho cặp số dương a2/c và c

Ta có: \(\frac{a^2}{c}+c\ge2\sqrt{\frac{a^2}{c}.c}=2a\)(1)

CMTT: \(\frac{b^2}{a}+a\ge2b\)(2)

         \(\frac{c^2}{b}+b\ge2c\)(3)

Từ (1); (2) và (3) cộng vế theo vế, ta có:

\(\frac{a^2}{c}+c+\frac{b^2}{a}+a+\frac{c^2}{b}+b\ge2a+2b+2c\)

<=> \(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge2a+2b+2c-a-b-c=a+b+c\)(Đpcm)

19 tháng 6 2020

\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra <=> a = b = c

22 tháng 9 2020

\(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

VT : (a + b + c)2 + a2 + b2 + c2

= a2 + b2 + c2 + 2ab +2bc + 2ac + a2 + b2 + c2

= ( a2 + 2ab + b2 ) + (b2 + 2bc + c2) + ( a2 + 2ac + c2)

= (a + b)2 + (b + c)2 + (a + c)2 = VP

Vậy \(\left(a+b+c\right)^2+a^2+b^2+c^2=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)(đpcm)

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV